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Towards a Physiologically-Based Dose –
Response Model

• Rationale
– Low dose extrapolation 

• Empirical data only exists in high-doses
– Understanding dominant modes of– Understanding dominant modes of 

transmission
• Optimal intervention strategies depend on which 

modes transmission are dominant
– E.g., face mask vs. decontamination for influenza control

Dose Response: The Exponential Model

• Biological rationale
– Single hit model

• Any pathogen has some probability of infection
• Each pathogen acts independently
• These assumptions lead us to the exponential model for risk

• Risk depends on dose and  r, the per pathogen risk 
• Does risk depend on time between inoculations?
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Biological Issues with Time- Independence

• Time independence 
– Implies immune system plays no role in controlling 

infection
• Immune system operates at time-scales ranging 

from minutes to weeks
• Time-scale of environmental contamination to 

exposure can be minutes to hours
– The innate immune system is active at this time scale

Physiologically-based Dose Response 
Behavior
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Assumption 1:
Inoculations occur over short time period.  Means doses can be summed
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Assumption 2:Assumption 2:
Inoculations occur over very long time period.  Means risks from each 

inoculation are independent

Assumption 3:
Inoculations occur over intermediate time periods.  Means risk should 

decrease for longer exposure periods

Cumulative Dose Model

System state variables and parameters

• Continuous time Markov chain model can capture the needed 
dynamics
– Dose has less probability of infection if the time of inoculation is 

longer
• Time-dependent dose-response experiments are needed to inform 

the dynamics of this dose response relationship

System state variables and parameters
P  # of pathogens
I   # of immune particles

D total dose
T  total inoculation time
αp = D/T for t<T and 0 for t>T

rp intrinsic growth rate of pathogens
δp deactivation rate of pathogens

αi arrival rate of immune particles
λi recruitment rate of immune particles
μi natural death rate of immune particles
δi deactivation rate of immune particles

(P,I)

(P-1,I)

PIδprp(P-1) + αp

(P,I+1)
αi+λiP

μi (I+1) + δiP(I+1)

Model description



Cumulative Dose Model: Dynamics

• Slow immune replenishment 
(αi=0.001):  
– Dose-response function 

is independent of dosing 
time periods

Fast immune 
replenishment

Slow immune 
replenishment

• Fast immune replenishment 
(αi=0.1):  
– Shorter dosing regimes 

shifts dose-response 
function to left 
(increased infectivity)

Blue to red transition represents longer/lower 
concentration dosing periods

Cumulative Dose Model: Effects of Number 
of Inoculations on Risk

• Three different 
inoculation events
– Same total dose

• Have different risks

Conclusions

• Physiologically based dynamic dose-response 
models 
– Incorporate an important time dependent property of 

infection dynamics
• The risk of one hundred pathogens at once is higher than the 

risk of one pathogen every day for one hundred days
• What impact do these dynamics have on 

transmission systems models and the design of 
interventions?
– Integration to a transmission model is computationally 

infeasible
– Need a simpler model

Simple Cumulative Dose Model

dD Dαγ= −

• D represents inoculated pathogens that are 
accumulated within the host

• Pathogen immune system interaction
– Pathogens are removed due to the action of the 

immune system
– The effectiveness of the immune system decreases 

as the number of pathogens increaseD
dt

γ=

1nαγ −

p g
• α governs the time dependence between 

inoculations
– α = 1 is the time independent, exponential condition
– α < 1 is the time dependent condition

• Expect life-time of a pathogen is (n is the number of 
initial pathogens)

Simple Cumulative Dose Model: Single 
Inoculation

Single inoculation case. 
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Where

• Te, the time to extinction of pathogens, is a function of the immune system 
(α,γ) and pathogen (r)

• s, the risk associated to a single pathogen that persists over time, is function 
of the immune system (α,γ) and pathogen (r)

Simple Cumulative Dose Model: Multiple 
Inoculation

Multiple inoculation case
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The same total dose of pathogens inoculated in 4 events instead of in 
20 events persist longer, and therefore, give a higher risk of infection

Total dose is the sum of each inoculation

Dose from each inoculation is a function of the prior dose
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Simple Cumulative Dose Model: Qualitative 
Behavior

• This simple cumulative dose model exhibits similar 
behavior as the more complex pathogen-immune 
interaction model
– Risk decreases as exposure time or inoculation events increase
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Incorporating Dynamic Dose-Response 
Functionality in a Transmission Model

• The classical SIR model does not take into account 
environment
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• To model environmental exposure a dose-response 
function, f,  is required to determine infectivity
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Incorporating Dynamic Dose-Response 
Functionality into a Transmission Model

• If immune system impacts the risk of infection
– The probability of becoming infected is calculated as a function of 

the current level of pathogen within the host.
– The number of pathogens in individual i residing in cell j evolves as 

a function of fomite pickup, Cfj, airborne pickup, Caj, and die off 
ithi h t

+ pickup Cf,j at self-inoculation rate

+ pickup Ca,j at breathing rate
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within host

– The per capita force of infection at every dt is a function of 
pathogen infectivity, r, and immune system dynamics, α, γ

• f(E) from previous slide becomes

Incorporating Dynamic Dose-Response 
Functionality into a Transmission Model

• How do the dose response dynamics impact fomite vs. 
airborne transmission?

• Simulation scenario (assumptions)
• Same TCID50 for fomite and airborne
• Contamination is constant

Risk α=1
TCID50=3.2

α=0.5, Te=12h
ID50=64

α=0.1, Te=12h, 
ID50=64

α=0.1, Te=12h, 
ID50=640

α=0.1, Te=12h, 
ID50=6400

Rtotal 0.2 0.1 0.03 0.04 0.04
Rfomite 0.11 0.05 0.02 0.03 0.03
Rair 0.11 0.02 0.003 0.0005 0.0001
Rfomite/ Rair 1.0 2.0 7.6 52 366

Contamination is constant 
• Same dose received via fomite and air

– These assumptions are all wrong, but allows us to compare the relative 
impacts of fomite and airborne routes of transmission

Conclusions

• Dynamic dose-response models can capture the 
immune system impact on infection
– The crucial issue is the time course of exposure

• The risk of exposure of one hundred pathogens at once is 
not same as the risk of exposure of one pathogen every day 
for one hundred days

I li i• Implications
– Risk of infections are more accurately captured

• Immune system serves to attenuate the impact of low-level 
longer term exposure

– Since temporal patterns of exposure differ by route of 
transmission, the dose response relationship can 
impact intervention strategies

• Fomite exposure has fewer but higher magnitude inoculation 
events

• Airborne exposure has more but lower magnitude inoculation 
events


